MSc Thesis Defense

Relation and Knowledge Aware Zero Shot Learning in 3D Object Recognition

Md Fokhrul Islam Exam Roll: 120702 Reg. No.: 2016-914-692 Course Code: RME 5401

Supervisor:

Dr. Sejuti Rahman Associate Professor Dept. of RME, DU

Dept. of Robotics & Mechatronics Engineering University of Dhaka

Agenda

- Introduction
 - Motivation
 - Problem Definition
- Related Work
- Novelty
 - Limitation of Existing Literature
 - Ours' Novelty
- Proposed Approach
 - Text-Image Alignment
 - Knowledge Graph Construction
 - Common Sense Embedding Learning
 - Contrastive GAN framework
 - Instance-level Contrastive Embedding
- Experiments & Results
 - Dataset
 - Overall Result (benchmark, backbone and prompt analysis)
 - Ablation (t-SNE plot, component and confusion matrix analysis)
- Conclusion

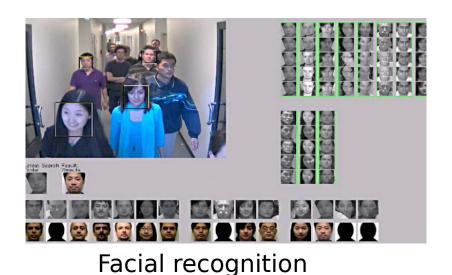
Motivation: 2D vs 3D

2D vision:

- Limitations: Lack of depth, viewpoint dependency
- harder for 2D vision to perform high level real-world tasks

3D vision:

- Advantages: Depth perception, robustness to pose variations
- Object recognition in robotics, augmented reality and

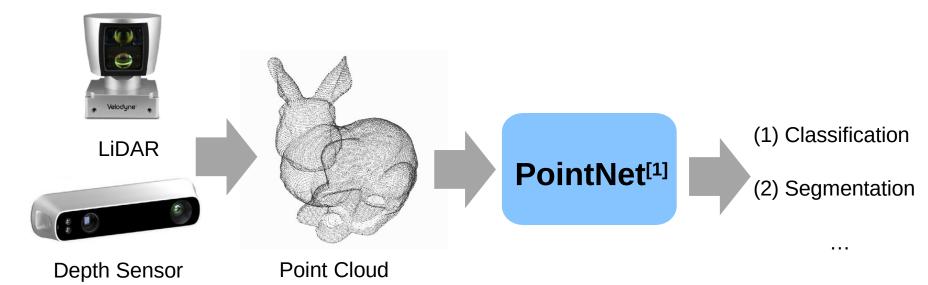


autonomous vehicles

Robot perception

3D Representation and Learning

- Point cloud is close to raw sensor data
 - End-to-end learning for scattered, unordered point data
- \checkmark
 - Unified framework for various tasks



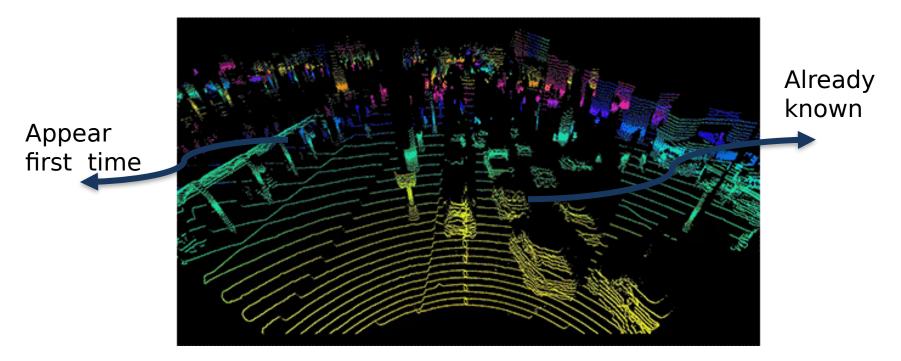
[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on point sets for 3d classification and segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660

Motivation: What Machine See in Real World?

Two type of scenario may occur in this situation:

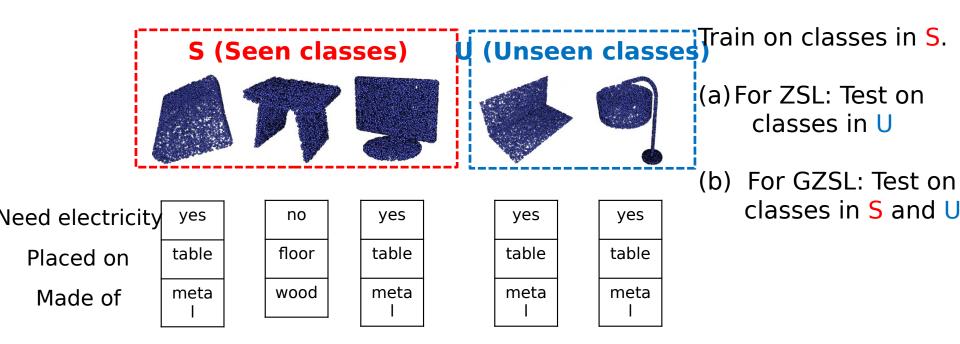
(a) Already known through supervision by trained on large amount of data

(b) Never seen this type of objects



Courtesy: New York Times, What Self-Driving Cars See?

Problem Definition



enerally, the learning is achieved using additional side-information called **sema** embedding or attributes vectors.

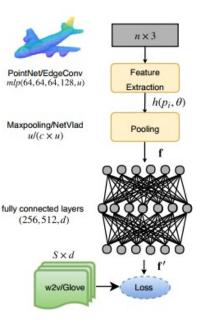
hese semantic embedding encode the intra class relationships between all the seen (S) and unseen (U) classes

*Example images come from ModelNet40 dataset

Related Work

- Zero-shot Learning of 3D Point Cloud Objects^[2]
 - First paper to introduced ZSL problem in 3D point cloud classification
 - Their architecture used semantic word vectors
 - Mitigating the Hubness Problem for Zero-Shot Learning of 3D Objects^[3]
 - New loss proposed to mitigate the hubness problem of 3D-ZSL task(s)
 - More ZSL and GZSL benchmark result provided for 3D point cloud classification

[2] A. Cheraghian, S. Rahman, and L. Petersson, "Zero-shot learning of 3d point cloud objects," in 2019 16th International Conference on Machine Vision Applications (MVA). IEEE, 2019, pp. 1–6. [3] A. Cheraghian, S. Rahman, D. Campbell, and L. Petersson, "Mitigating the hubness problem for zero-shot learning of 3d objects," arXiv proprint arXiv:1007.06271, 2010.



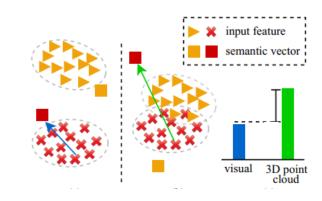


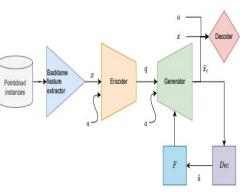
Related Work (2)

- Transductive Zero-Shot Learning for 3D Point Cloud Classification^[4]
 - Reduced the bias and encouraged the projected semantic vectors to align with their true feature vector
 - Developed a novel triplet loss to minimize the average intra-class distance

- First method to apply GAN based approach on 3D ZSL
- Used 2D image features as auxiliary info

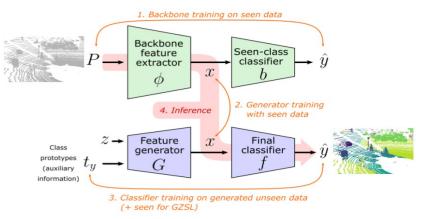
[4] A. Cheraghian, S. Rahman, D. Campbell, and L. Petersson, "Transductive zero-shot learning for 3d point cloud classification," in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 923–933. [5] Muhammad Tahmeed Abdullah. "Improving 3D object Recognition with Contextual Information and Meta Learning." Master's thesis in department of Robotics and Mechatronics Engineering, 8





Related Work (3)

- Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds^[6]
 - Proposed a generative framework and provide 3 benchmarks.
 - Provided evidence that generation based method can perform better in GZSL
 - Failed to incorporate Image-text embedding and left it for future researcher



[6] Michele, Björn, et al. "Generative zero-shot learning for semantic segmentation of 3d point clouds." 2021 International Conference on 3D Vision (3DV). IEEE, 2021.

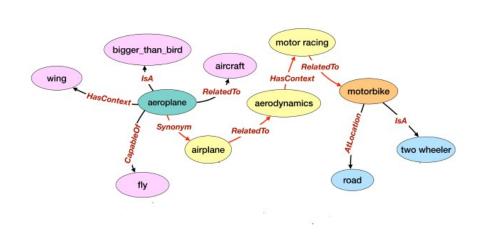
Limitations in Existing Literatures

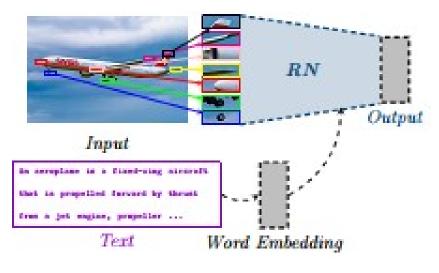
- Limitations in existing works:
 - Cannot connect different class in semantic space [No relation]
 - Using only 2D (one/some) image can not be viable because of image variations [need to learn class attribute]
 - Generative unseen features are more bias toward seen class [no distinct feature representation]

Novelty

- Knowledge aware:
 - Connect all concepts through knowledge graph.
 - They relate each other through learned embedding

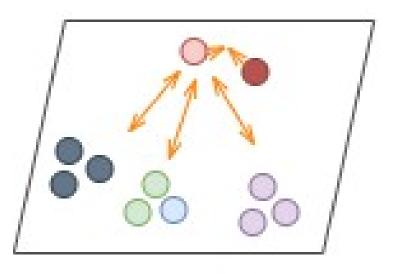
- Relational aware:
 - Extend the implicit information by incorporating 2D image feature with text
 - Both modalities make relation based on leaned feature



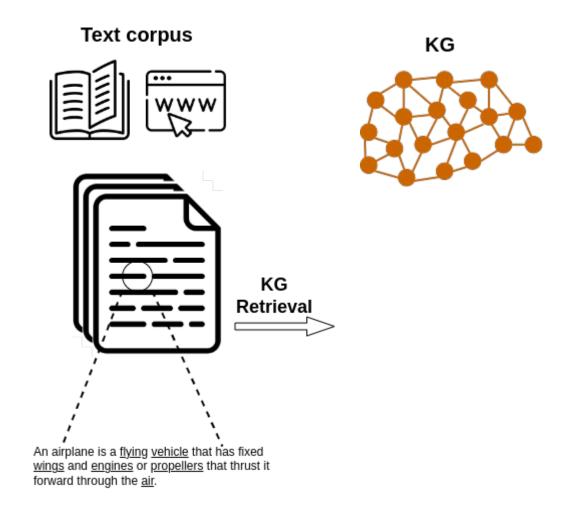


Novelty(2)

- More distinct synthetic feature leaning:
 - Learn a more accurate 3D visual feature representation using contrastive semi supervised leaning
 - This will also solve bias problem occur in seen-unseen classes

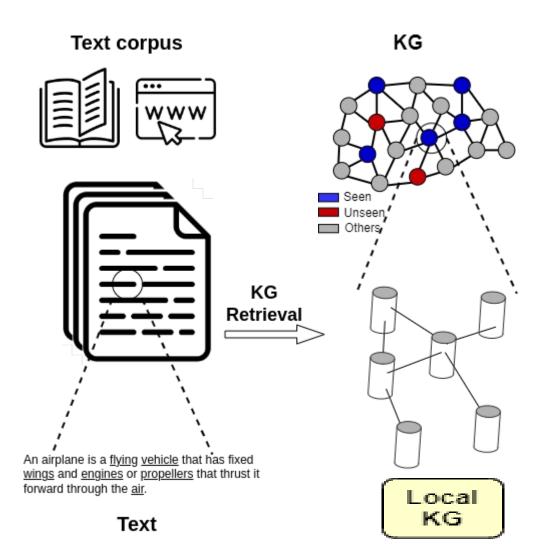


Knowledge Graph Construction

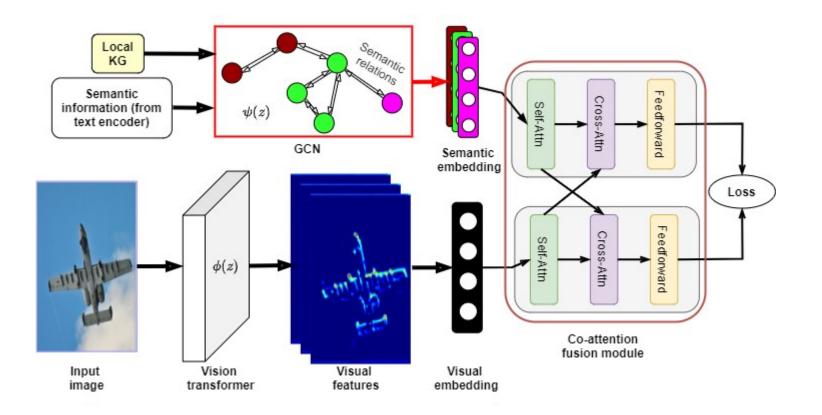


Text

Knowledge Graph Construction



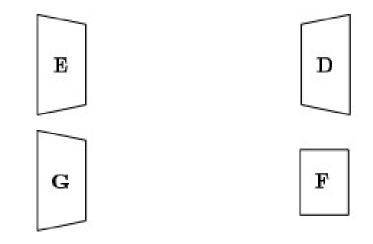
Common Sense Embedding



Text-Image Alignment Loss

$$\ell^{(I \rightarrow T)} = -log \frac{exp(s(I_i, T_i)/\tau)}{\sum_{k=1}^{N} exp(s(I_i, T_k)/\tau)} \quad \ell^{(T \rightarrow I)} = -log \frac{exp(s(T_i, I_i)/\tau)}{\sum_{k=1}^{N} exp(s(T_i, I_k)/\tau)}$$
$$\mathcal{L}_{mm} = \frac{1}{N} \sum_{n=1}^{N} \lambda \ell_n^{(I \rightarrow T)} + (1 - \lambda) \ell_n^{(T \rightarrow I)}$$

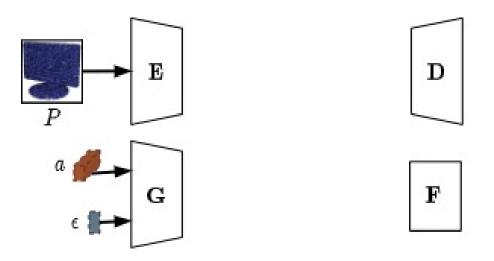
Contrastive GAN Framework



- E: Point cloud encoder
- G: Generator network
- D: Discriminator
- network
- F: Classifier network

Contrastive GAN Framework

- Provide input 3D point cloud to encoder
- Generator net. take both attribute of class and random noise



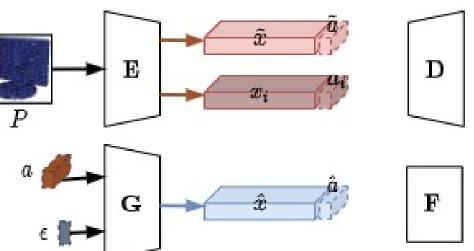
- E: Point cloud encoder
- G: Generator network

D: Discriminator network

- F: Classifier network
- P: Point cloud sample
- a: Attribute vector
- ¿: noise

Contrastive GAN Framework(2)

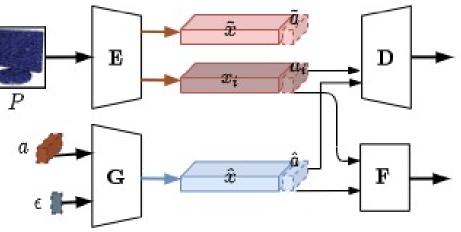
- Provide input 3D point cloud to encoder
- Generator net take both attribute of class and random noise
- Encoder convert each P into respective embedding
- Generator create embedding based on given input



- E: Point cloud encoder
- G: Generator network
- D: Discriminator network
- F: Classifier network
- P: Point cloud sample
- a: Attribute vector
- ε: noise
- x: point cloud
- embedding

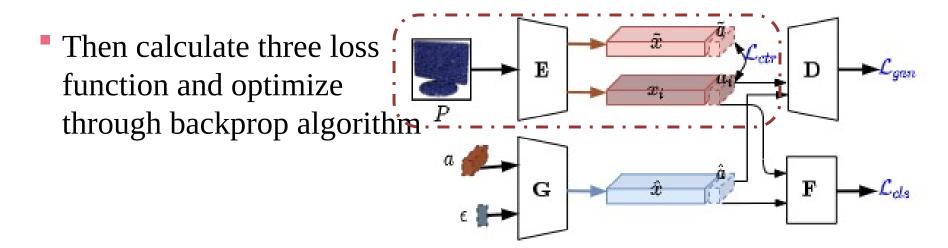
Contrastive GAN Framework(3)

- Provide input 3D point cloud to encoder
- Generator net take both attribute P of class and random noise
- Encoder convert each P into respective embedding
- Generator create embedding based on given input
- Discriminator classify the given input is real or fake



- E: Point cloud encoder
- G: Generator network
- D: Discriminator network
- F: Classifier network
- P: Point cloud sample
- a: Attribute vector
- E: noise
- x: point cloud
- embedding

Contrastive GAN Framework(4)



$$\mathcal{L}_{ctr} = -log \frac{exp(sim(h_i, h^+)/\tau_e)}{exp(sim(h_i, h^+)/\tau_e) + \sum_{k=1}^{K} exp(sim(h_i, h^-)/\tau_e)}$$

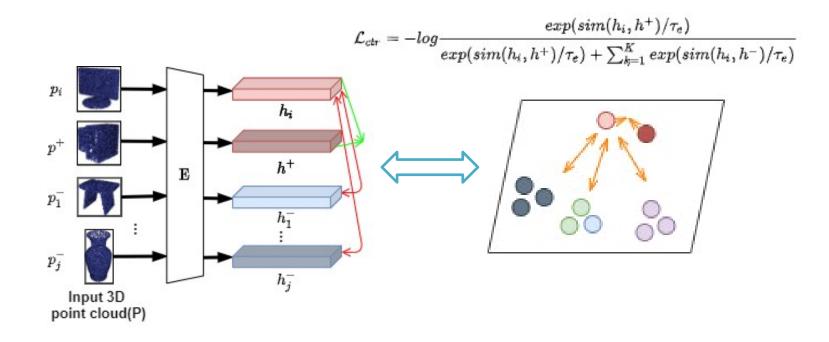
$$\mathcal{L}_{gam} = \mathbb{E}_{p(x,a)}[log D(x,a)] + E_{p_G(\hat{x},a)}[log(1-D(\hat{x},a))]$$

$$\mathcal{L}_{cls} = - \mathbb{E}_{ ilde{x} \sim p_{ ilde{x}}} [log P(y | ilde{x}; heta)]$$

$$\mathsf{Optimize}: \max_{D} \min_{G,F,H} \mathcal{L}_{gan} + lpha \mathcal{L}_{ctr} + eta \mathcal{L}_{cls}$$

- E: Point cloud encoder
- G: Generator network
- D: Discriminator network
- F: Classifier network
- P: Point cloud sample
- a: Attribute vector
- ¿: noise
- x: point cloud
- embedding

Instance-level Contrastive Embedding



- Make similar class instance closer to one another
- Repulsing dissimilar classes sample
- Learn it though contrastive loss

Datasets: Real-world

1. RGB-D^[7]

- Total class: 51
- Seen/ Unseen: 41/10
- Train/Valid/Test: 8032/2135/1607

2. ScanObjectNN^[8]

- Total class: 37
- Seen/ Unseen: 26/11
- Train/Valid/Test: 2902/819/495
- Newly benchmarked real world dataset

[7] K. Lai, L. Bo, X. Ren, and D. Fox, "A large-scale hierarchical multi-view rgb-d object dataset," in 2011 IEEE international conference on robotics and automation. IEEE, 2011, pp. 1817–1824. [8] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, "Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data," in Proceedings of the IEEE/CVF ICCV, 2019.

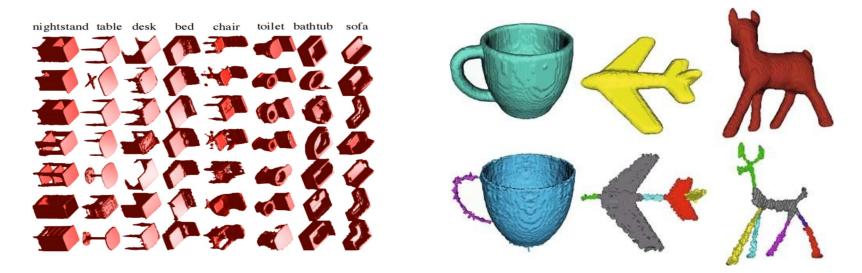
Datasets: Synthetic

3. ModelNet40^[9]

- Total class: 40
- Seen/ Unseen: 30/10
- Train/Valid/Test: 5852/1560/908
- Widely used and synthetic dataset
 Synthetic dataset

4. McGill^[10]

- Total class: 44
- Seen/ Unseen: 30/14
- Train/Valid/Test: 5852/1560/115



[9] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, "3d shapenets: A deep representation for volumetric shapes," in Proceedings of the IEEE CVPR, 2015. [10] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and S. Dickinson, "Retrieving articulated 3-d models using medial surfaces," Machine vision and applications, vol. 19, pp. 261–275, 2008.

Overall Results

	ModelNet40			McGill				ScanObjectNN				
Method	ZSL		GZSL		ZSL		GZSL		ZSL		GZSL	
	Acc	Accs	Accu	HM	Acc	Accs	Accu	HM	Acc	Accs	Accu	HM
(2D & End-to-End Network.)												
AREN[11]	19.5	78.5	0.0	0.0	13.1	77.4	0.0	0.0	14.5	79.6	0.0	0.0
LFGAA[12]	16.2	76.8	0.7	1.4	12.8	73.4	2.3	4.4	11.7	78.4	1.7	3.3
RGEM[13]	18.9	73.8	6.8	12.4	14.1	76.2	4.6	8.6	15.5	77.4	6.2	11.4
APN[14]	18.6	77.3	5.8	10.8	15.0	76.2	6.8	12.5	13.6	76.2	4.2	8.0
GOGE[15]	19.9	75.4	8.3	15.0	12.4	77.5	5.8	10.8	14.8	76.4	6.8	12.5
LGE[16]	14.7	77.6	2.3	4.5	11.3	76.8	2.8	5.4	12.7	76.4	1.2	2.4
(2D & Generative Network.))											
f-CLSWGAN[17]	12.8	69.3	10.5	18.3	14.2	73.2	9.1	16.2	15.7	74.8	11.2	19.5
CADA-VAE[18]	15.2	82.6	2.6	5.0	6.8	83.6	8.7	15.8	17.1	78.8	13.8	23.5
GDAN[19]	18.4	76.4	8.3	15.0	12.8	73.6	9.4	16.7	16.5	75.4	9.2	16.4
TF-VAEGAN[20]	23.8	64.4	10.1	18.4	15.5	72.3	9.4	16.6	18.2	59.8	13.6	22.1
FG-DFC[21]	20.1	68.5	11.4	19.5	14.6	73.2	8.6	15.4	12.8	71.6	10.7	18.6
CE-GZSL[22]	16.4	70.3	9.8	17.2	14.8	76.2	7.6	13.8	14.2	68.1	11.8	20.1
(3D)												
ZSLPC [2]	28.0	40.1	22.5	28.8	16.1	-	-	-	-	-	-	-
G-ZSLPC [3]	33.9	53.8	26.2	35.2	12.5	-	-	-	-	-	-	-
ZSLPC&B [4]	32.5	89.4	6.8	12.7	15.7	71.1	8.7	15.5	24.1	89.4	5.7	10.7
3DGenZ [6]	36.8	47.8	36.5	41.3	9.4	49.6	8.6	14.5	-	-	-	-
<u>MPCN [23]</u>	31.3	70.6	12.6	21.4	17.0	77.6	9.8	17.4	20.5	<u>73.4</u>	16.2	26.5
<u>Ours</u>	46.9	<u>69.6</u>	38.9	<u>49.9</u>	<u>19.7</u>	65.0	10.4	17.9	26.6	83.6	20.9	33.5

Table 1: Overall

[2] A. Cheraghian, S. Rahman, and L. Pe**ressoft** "Zero-shot learning of 3d point cloud objects," in 2019 16th International Conference on Machine Vision Applications (MVA). IEEE, 2019, pp. 1–6. [3] A. Cheraghian, S. Rahman, D. Campbell, and L. Petersson, "Mitigating the hubness problem for zero-shot learning of 3d objects," in British Machine Vision Conference (BMVC'19), 2019 [4] A. Cheraghian, S. Rahman, D. Campbell, and L. Petersson, "Transductive zero-shot learning for 3d point cloud classification," in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 923–933 [6] Michele, Björn, et al.

Overall Results (2)

	Acc	Acc_s	Acc_u	HM
Tahmeed et. al.[5]	45.22	85.76	25.39	39.18
Ours				42.54

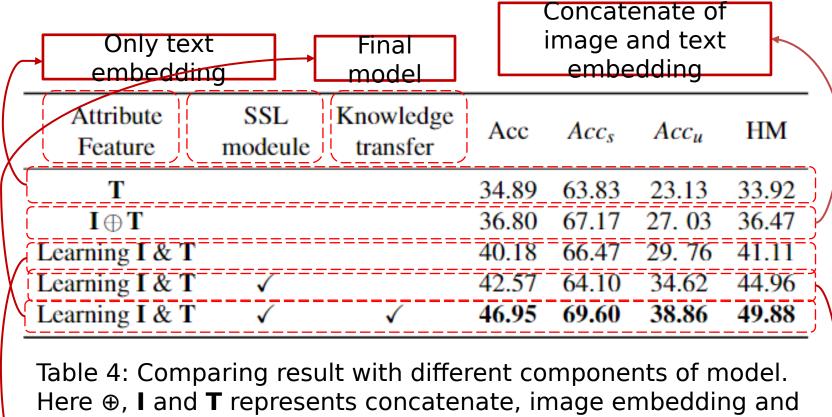
Table 2: Overall result on RGB-D dataset

Prompts	Acc	Accs	Acc_u	HM
"a photo of a [CLASS]."	42.57	64.10	34.62	44.96
"[class] description."	42.26	65.40	32.24	43.19
"a Point cloud of a [CLASS]."	<u>46.67</u>	<u>64.90</u>	<u>37.50</u>	47.53
"[CLASS]."	46.95	69.60	38.86	49.88

Table 3: Result on different text prompt

[5] Muhammad Tahmeed Abdullah. "Improving 3D object Recognition with Contextual Information and Meta Learning." Master's thesis in department of Robotics and Mechatronics Engineering, University of Dhaka (2022).

Ablation Studies: Component

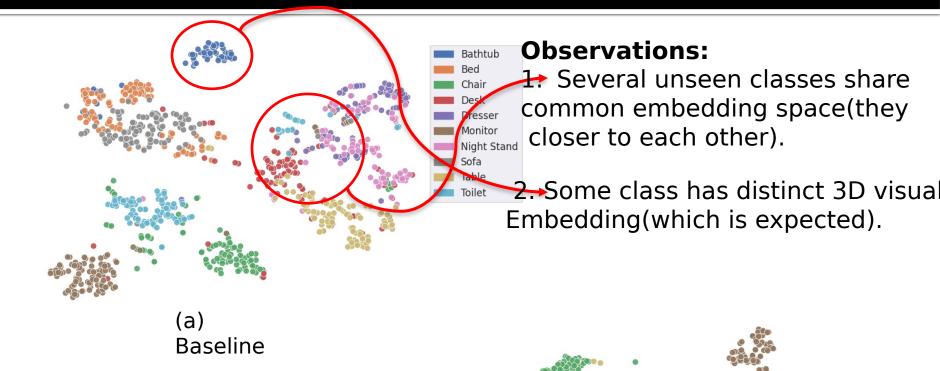


text embedding respectively.

Learning embedding from both modalities Incorporating point-

wise contrastive learning in intermediate feature

Ablation Studies: t-SNE Analysis



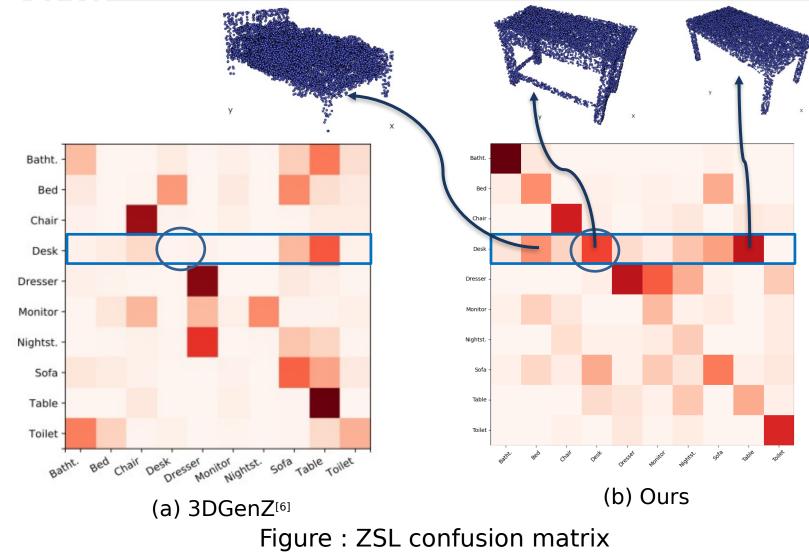
(b) Ours

Solutions:

 Providing an inter and intra-class selfsupervised contrastive loss can further mprove the embedding

Which make instances of similar class closer
 a each other and repulse the instances of other classes

Results Analysis: ZSL Confusion Matrix



[6] B. Michele, A. Boulch, G. Puy, M. Bucher, and R. Marlet, "Generative zero-shot learning for semantic segmentation of 3d point clouds," in 2021 International Conference on 3D Vision (3DV). IEEE, 2021, pp. 992–

Results Analysis: GZSL Confusion Matrix

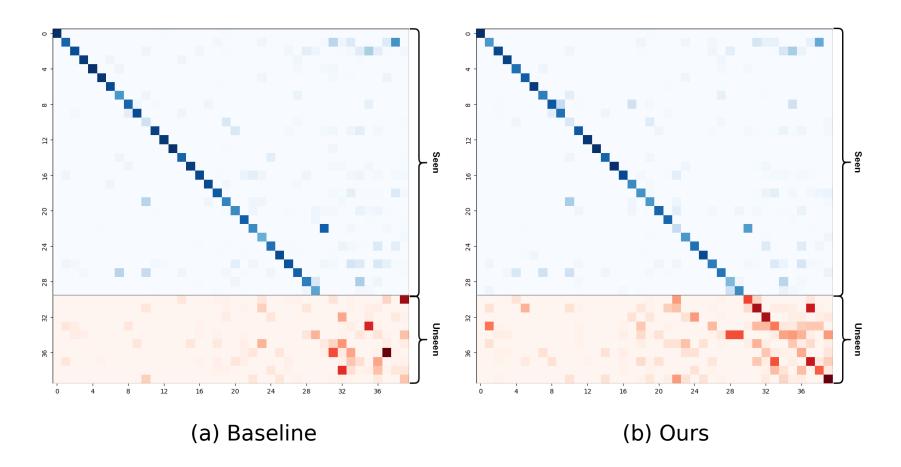


Figure : GZSL confusion matrix

Conclusion

- We use the commonsense knowledge graph with GCN to produce commonsense embedding
- We propose co-attention based multi-model learning to distil info from both semantic and 2D visual data
- Also design an contrastive based generative framework to distil unseen augmented features
- Experimental findings showed that our method outperformed existing approach on a 3D visual dataset
- Further research should be done on other task like segmentation, detection in Zero shot setup

Reference

[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on point sets for 3d classification and segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660

[2] A. Cheraghian, S. Rahman, and L. Petersson, "Zero-shot learning of 3d point cloud objects," in 2019 16th International Conference on Machine Vision Applications (MVA). IEEE, 2019, pp. 1–6.

[3] A. Cheraghian, S. Rahman, D. Campbell, and L. Petersson, "Mitigating the hubness problem for zero-shot learning of 3d objects," arXiv preprint arXiv:1907.06371, 2019
[4] A. Cheraghian, S. Rahman, D. Campbell, and L. Petersson, "Transductive zero-shot learning for 3d point cloud classification," in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 923–933.

[5] Muhammad Tahmeed Abdullah. "Improving 3D object Recognition with Contextual Information and Meta Learning." Master's thesis in department of Robotics and Mechatronics Engineering, University of Dhaka (2022).

[6] Michele, Björn, et al. "Generative zero-shot learning for semantic segmentation of 3d point clouds." 2021 International Conference on 3D Vision (3DV). IEEE, 2021.

[7] K. Lai, L. Bo, X. Ren, and D. Fox, "A large-scale hierarchical multi-view rgb-d object dataset," in 2011 IEEE international conference on robotics and automation. IEEE, 2011, pp. 1817–1824.

[8] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, "Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data," in Proceedings of the IEEE/CVF ICCV, 2019.

[9] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, "3d shapenets: A deep representation for volumetric shapes," in Proceedings of the IEEE CVPR, 2015.

[10] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and S. Dickinson, "Retrieving articulated 2 d models using modial surfaces," Machine vision and applications, vol. 10, pp. 32

Reference(2)

[11] G.-S. Xie, L. Liu, X. Jin, F. Zhu, Z. Zhang, J. Qin, Y. Yao, and L. Shao, "Attentive region embedding network for zero-shot learning," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.

9384-9393

[12] Y. Liu, J. Guo, D. Cai, and X. He, "Attribute attention for semantic disambiguation in zeroshot learning," in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6698–6707.

[13] G.-S. Xie, L. Liu, F. Zhu, F. Zhao, Z. Zhang, Y. Yao, J. Qin, and L. Shao, "Region graph embedding network for zero-shot learning," in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16. Springer, 2020, pp. 562– 580.

[14] W. Xu, Y. Xian, J. Wang, B. Schiele, and Z. Akata, "Attribute prototype network for zero-shot learning," Advances in Neural Information Processing Systems, vol. 33, pp. 21 969–21 980, 2020.

[15] Y. Liu, L. Zhou, X. Bai, Y. Huang, L. Gu, J. Zhou, and T. Harada, "Goal-oriented gaze estimation for zero-shot learning," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 3794–3803.

[16] M. F. Naeem, Y. Xian, F. Tombari, and Z. Akata, "Learning graph embeddings for compositional zero-shot learning," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 953–962.

[17] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, "Feature generating networks for zero-shot learning," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5542–5551

[18] E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata, "Generalized zeroand few-shot learning via aligned variational autoencoders," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8247–8255.

Reference(3)

[21] D. Huynh and E. Elhamifar, "Compositional zero-shot learning via fine-grained dense feature composition," Advances in Neural Information Processing Systems, vol. 33, pp. 19 849–19 860, 2020.

[22] Z. Han, Z. Fu, S. Chen, and J. Yang, "Contrastive embedding for generalized zero-shot learning," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2371–238

[23] Y. Cao, Y. Su, G. Lin, and Q. Wu, "Mutex parts collaborative network for 3d point cloud zeroshot classification," in Available at SSRN 4332138, 2023.

Thank You

Questions?