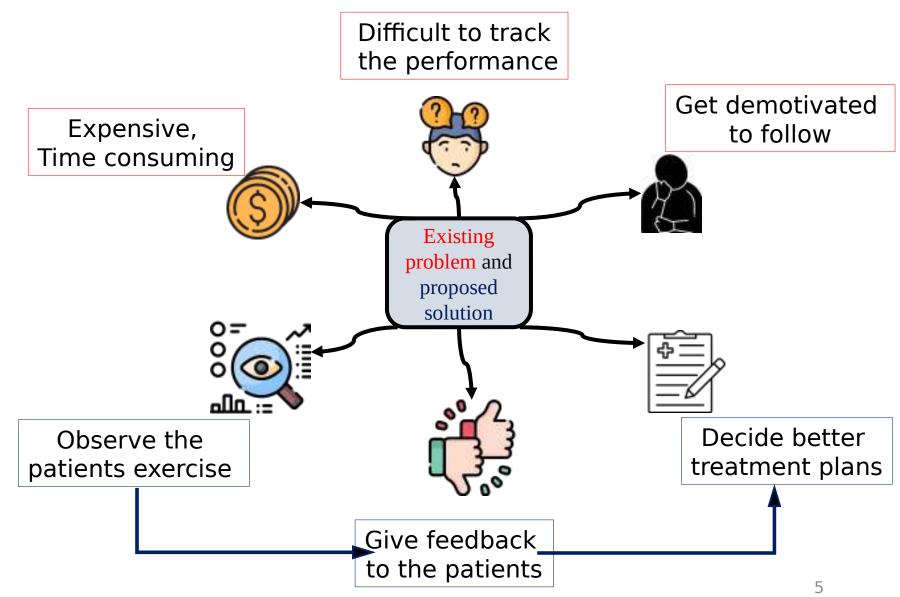
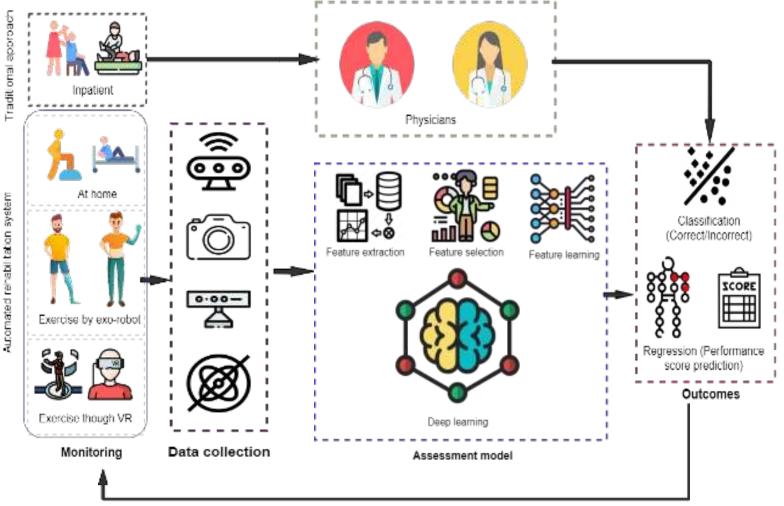
An Intelligent Agent for Evaluating and Guiding the Post-Stroke Rehabilitation Exercises

Presented by Md Fokhrul Islam (Exam Roll : 1206) Swakshar Deb (Exam Roll : 1219)


Supervised by Dr. Sejuti Rahman Assistant Professor Department of Robotics and Mechatronics Engineering University of Dhaka

Agenda

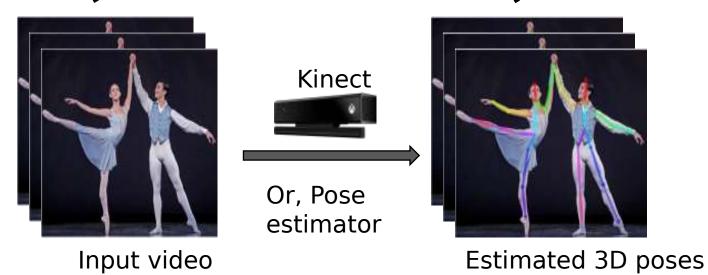
- Introduction
 - Motivation
- Preliminary
 - Data Collection, Graph, Skeleton as a Graph
 - Demo of Pose Estimation
- Novelty
 - Limitation of Existing Literature
 - Ours' Novelty
- Solution Framework
 - STGCN
- Proposed Approach
 - Role of body joint
 - Guidance
 - Varying Length
- Experiments & Results
 - Dataset Description
 - Overall Result
 - Analysis of Handcrafted and Featuring Learning
- Assessment on RGB camera
 - Overall Result
 - Trade off
- Conclusion


Introduction

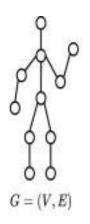
Introduction

Introduction

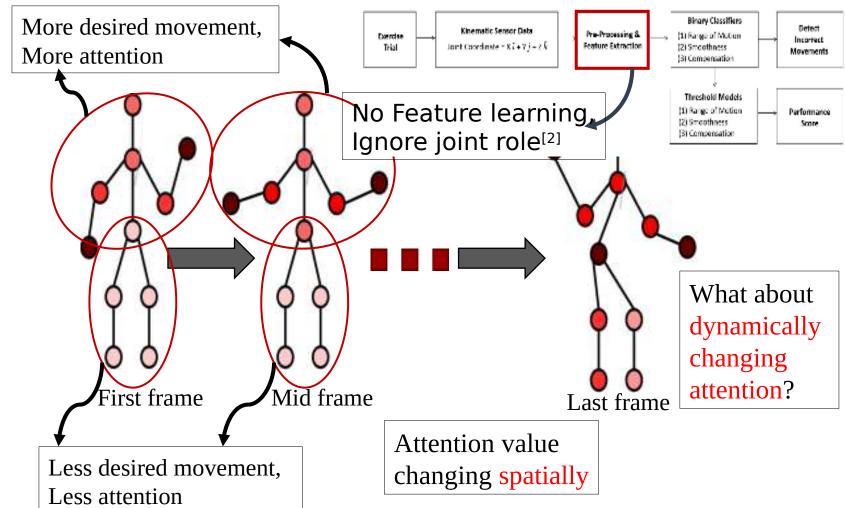
Motivation



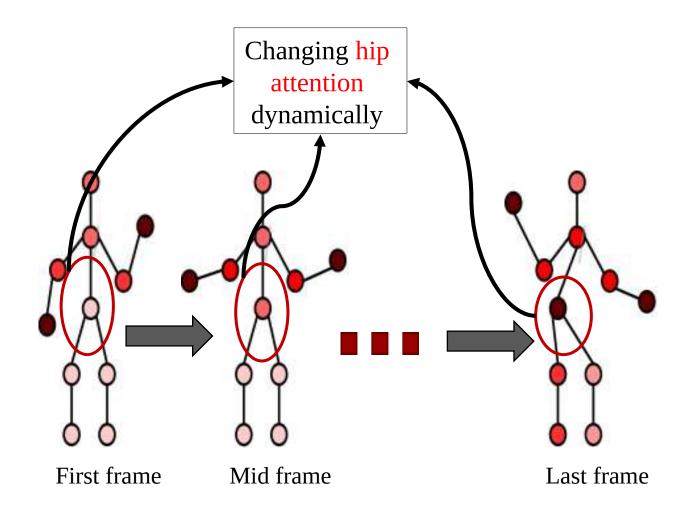
Feedback


Preliminaries

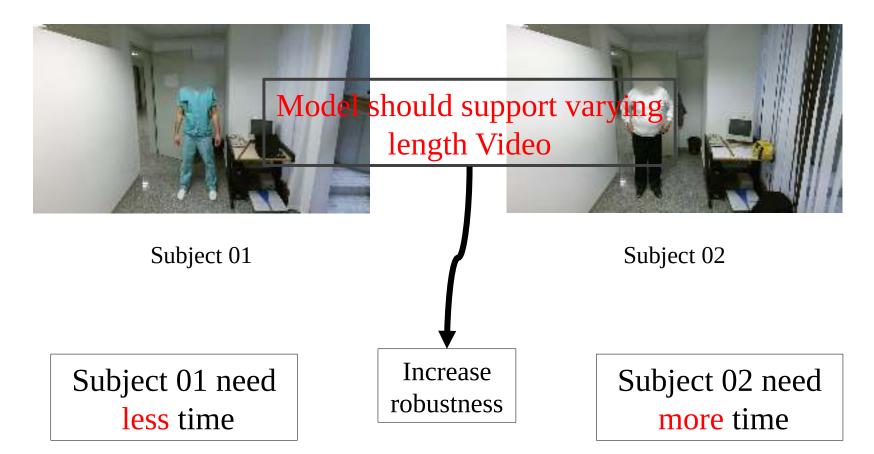
Preliminaries


Data collection, Graph, Skeleton as Graph

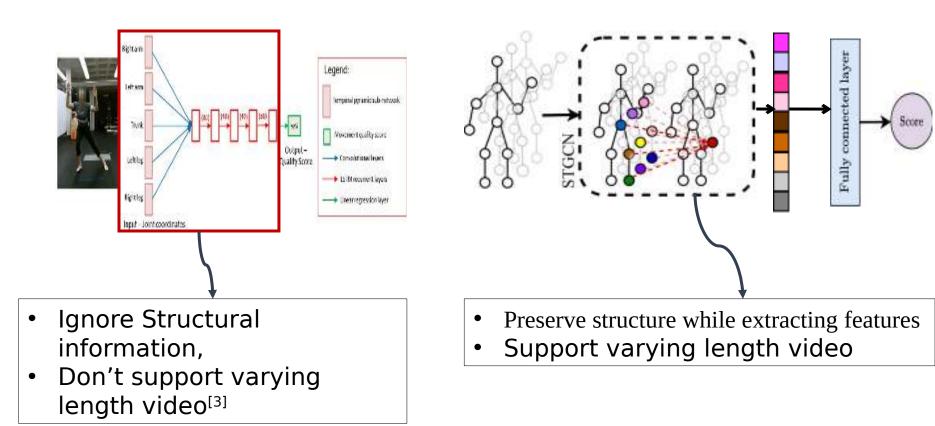
- Human body can efficiently represent as skeleton^[1]
- Joints Indes(V), bones Indes(E)
- **Graph (G)** naturally captures the structure of human body



Existing Literature & Ours' Improvement

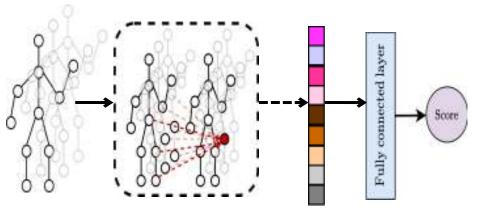


[2] Lee et al., "Learning to assess the quality of stroke rehabilitation exercises," in Proceedings of the 24th
International Conference on Intelligent User Interfaces,
2019


Existing Literature & Ours' Improvement

Novelty Existing Literature & Ours' Improvement

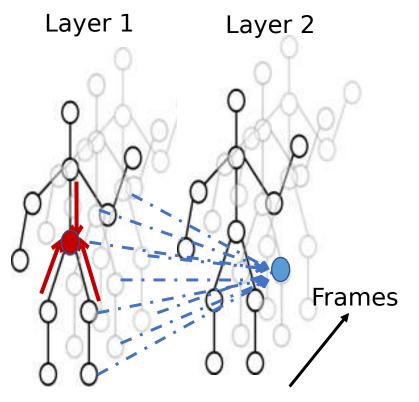
Existing Literature & Ours' Improvement

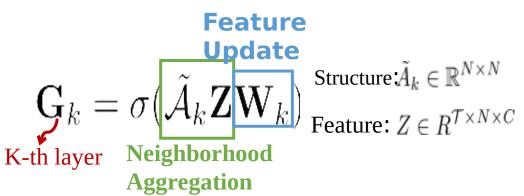


[3] Liao et al., "A deep learning framework for assessing physical rehabilitation exercises," IEEE TSNRE 2020.

Solution Framework

Solution Framework

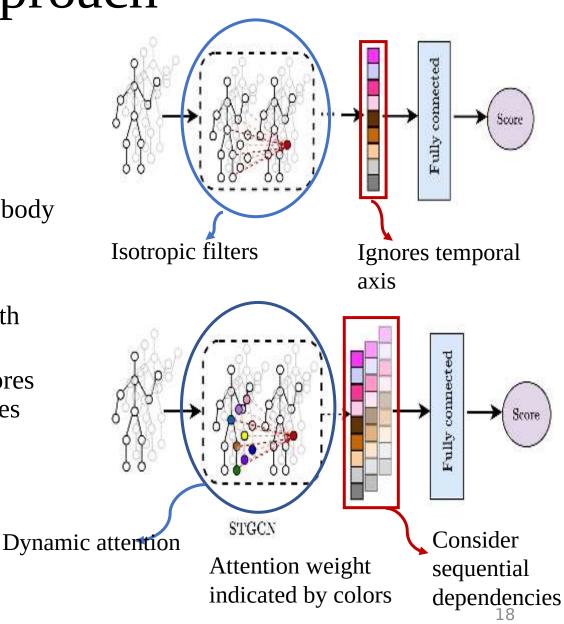

- Take the RGBD data as input.
- Pass it through the STGN layers to extract spatio-temporal features.
- Perform global pooling to convert it to a vector representation.
- Get the score output from the fully connected layer.



Solution Framework

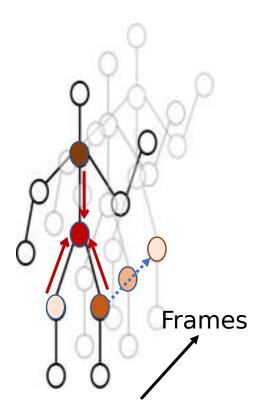
ST-GCN

- Extract spatio-temporal features through successive STGCN layer^[4].
- Each STGCN layer has two component:
 - **Spatial layer:** Extract spatial features performing Graph Convolution.
 - **Temporal layer(TC):** Extract temporal features.



Proposed Approach

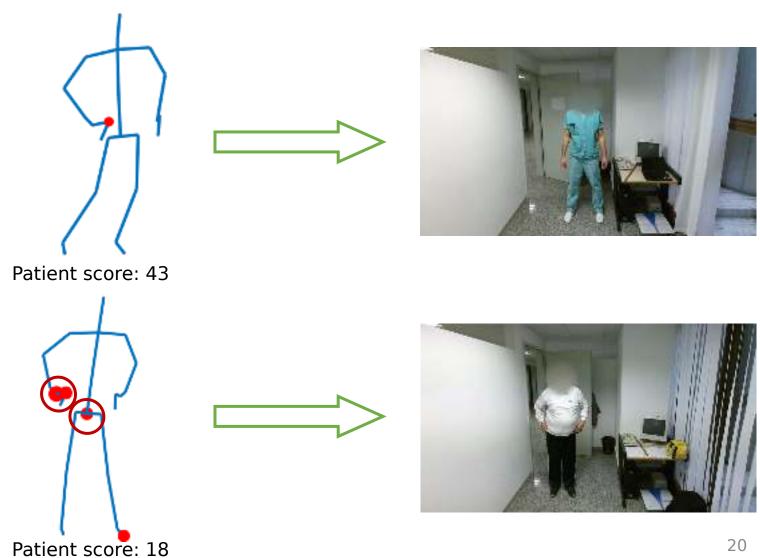
Proposed Approach


- Role of body joints.
 - Dynamic attention in body joints.
- Input flexible.
 - Support variable length input.
 - Vanilla approach ignores sequential dependences reside in the features.

Proposed Approach

Role of Body Joints

- Produce anisotropic filters that are more powerful than isotropic GCN.
- Treat spatial and temporal axis separate.


Feature Update

$$\mathbf{G}_k = \sigma(\phi(\hat{\mathcal{A}}_k \odot \mathbf{M}_k) \mathbf{Z} \mathbf{W}_k)$$

Attention based Aggregation

Proposed Approach

Guidence

Dataset Description

Feature	UI-PRMD	KIMORE			
Reference	Vakanski et. al. (2018)	capecci et. al. (2019)			
Year	2018	2019			
Sensor	Kinect $v2 + Vicon$	Kinect v2			
Modality	Skeleton data	RGB-D and skeleton data			
No. of Subjects	10	78			
No. of Exercises	10	5			
Score range	0 - 1	0 - 50			

- KIMORE^[5] and UI-PRMD^[6] are well established dataset on rehabilitation exercises.
- Data is captured by professional physio therapists in their respective field and the labels are also given by them.

[5] Capecci et. al. The kimore dataset: Kinematic assessment of movement and clinical scores for remote monitoring of physical rehabilitation," IEEE Transactions on Neural Systems and Rehabilitation Engineering,

[6] Vakanski el. al. A data set of human body movements for physical rehabilitation exercises, Data, vol. 3.

Evaluation metrics

- In our task the evaluation criteria is mean absolute deviation(MAD), Mean absolute percentage error(MAPE), Root mean square error.
- Calculate deviation from the actual value.
- The lower the values better the performance.

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |y - \hat{y}|$$
$$MAPE = \frac{1}{n} \sum_{i=1}^{n} |\frac{y - \hat{y}}{y}| \times 100$$
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2}$$

n = sample size, y = label, y'=prediction

Overall Result (UI-PRMD)

Ex	Ours	Song et al.[4]	Zhang et al.[5]	Liao et al. [3]	Li et al. [6]	Shahroudy et al. [7]	Du et al.[8]	Deep CNN	Deep LSTM
Ex1	0.009	0.011	0.022	0.011	0.011	0.018	0.030	0.013	0.016
Ex2	0.006	0.006	0.008	0.028	0.029	0.044	0.077	0.02	0.049
Ex3	0.013	0.010	0.016	0.039	0.056	0.081	0.137	0.041	0.093
Ex4	0.006	0.014	0.016	0.012	0.014	0.024	0.036	0.016	0.016
Ex5	0.008	0.013	0.008	0.019	0.017	0.032	0.064	0.013	0.025
Ex6	0.006	0.009	0.008	0.018	0.019	0.034	0.047	0.023	0.021
Ex7	0.011	0.017	0.021	0.038	0.027	0.049	0.193	0.033	0.040
Ex8	0.016	0.017	0.025	0.023	0.025	0.051	0.073	0.029	0.045
Ex9	0.008	0.008	0.027	0.023	0.027	0.043	0.065	0.024	0.044
Ex10	0.031	0.038	0.066	0.042	0.047	0.077	0.160	0.036	0.051

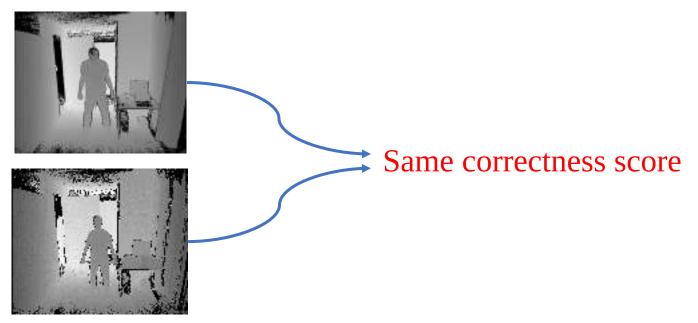
Table 1: Results on the UI-PRMD dataset

[3] Liao et al., "A deep learning framework for assessing physical rehabilitation exercises," IEEE TSNRE 2020. [4] Song et. al., "Richly activated graph convolutional network for robust skeleton-based action recognition," IEEE TCSVT, 2021. [5] Zhang et. al., "Semantics guided neural networks for efficient skeleton-based human action recognition," CVPR 2020.[7]LI et. al., Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation," AAAI 2018.[8] Du et al., "Hierarchical recurrent neural network for skeleton based action recognition," CVPR 2015[6] Yanet al., "Spatial temporal graph convolutional networks for skeleton-based action recognition," AAAI2018.

Overall Result (KIMORE)

Metric	Exercise	Ours	Song et al.[4]	Zhang et al.[5]	Liao et al.[3]	Yan et al.[6]	Li et al.[7]	Du et al.[8]
	Ex1	0.799	0.977	1.757	1.141	0.889	1.378	1.271
	Ex2	0.774	1.282	3.139	1.528	2.096	1.877	2.199
MAD	Ex3	0.369	1.105	1.737	0.845	0.604	1.452	1.123
	Ex4	0.347	0.715	1.202	0.468	0.842	0.675	0.880
	Ex5	0.621	1.536	1.853	0.847	1.2184	1.662	1.864
	Ex1	2.024	2.165	2.916	2.534	2.017	2.344	2.440
	Ex2	2.120	3.345	4.140	3.738	3.262	2.823	4.297
RMS	Ex3	0.556	1.929	2.615	1.561	0.799	2.004	1.925
	Ex4	0.644	2.018	1.836	0.792	1.331	1.078	1.676
	Ex5	1.181	3.198	2.916	1.914	1.951	2.575	3.158
	Ex1	1.926	2.605	5.054	2.589	2.339	3.491	3.228
MAPE	Ex2	1.272	3.296	10.436	3.976	6.136	5.298	6.001
	Ex3	0.728	2.968	5.774	2.023	1.727	4.188	3.421
	Ex4	0.824	2.152	3.901	2.333	2.325	1.976	2.584
	Ex5	1.591	4.959	6.531	2.312	3.802	5.752	5.620

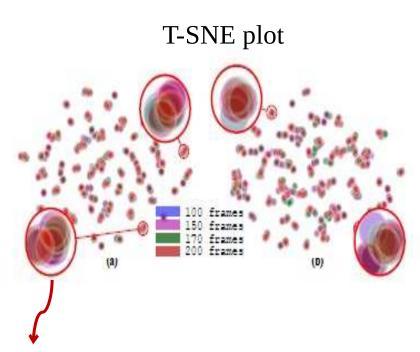
Table 2: Results on KIMORE dataset


[3] Liao et al., "A deep learning framework for assessing physical rehabilitation exercises," IEEE TSNRE 2020. [4] Song et. al., "Richly activated graph convolutional network for robust skeleton-based action recognition," IEEE TCSVT, 2021. [5] Zhang et. al., "Semantics guided neural networks for efficient skeleton-based human action recognition," CVPR 2020.[7]LI et. al., Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation," AAAI 2018.[8] Du et al., "Hierarchical recurrent neural network for skeleton based action recognition," CVPR 2015[6] Yanet al., "Spatial temporal graph convolutiona¹/₂5 networks for skeleton-based action recognition," AAAI2018.

Ablation Study

Is- Stacked	00 0		Has-self attention	MAD	RMSE	MAPE		
No	Global Pool	No	No	2.585	3.795	8.920		
Yes	Global Pool	No	No	1.472	2.560	4.878		
Yes	Global Pool	Yes	No	1.365	2.184	4.320		
Yes	LSTM	Yes	No	0.767	1.484	2.340		
Yes	LSTM	Yes	Yes	0.478	0.981	1.516		
	lering sequ lences of th	1e []]	Producir	0				
feature		ic	anisotropic filers					

Robustness Analysis


Does speed matter for an exercise

• Independent of peace, flexible model detect similar features.

Robustness Analysis

- 2-D representation of the extracted spatio temporal features.
- Closer points indicate similar features

Detect similar features independent of input length

Handcrafted vs Feature Learning

Importance

- Benchmarking
- Scarcity of Benchmarking
- Benchmarking on Gold Standard Datasets

Handcrafted vs Feature Learning

Benchmark on UI-PRIMD

Ex		Deep	Learning	Handcrafted features [5]					
LA	Ours	Du et al.[8]	Li et al. [7]	Yan et al. [4]	Liao et al. [3]	K-NN	RF	SVM	NN
Ex1	0.009	0.042	0.040	0.041	0.039	0.030	0.010	0.018	0.010
Ex2	0.006	0.008	0.008	0.009	0.018	0.077	0.029	0.044	0.028
Ex3	0.013	0.015	0.018	0.016	0.023	0.137	0.055	0.080	0.039
Ex4	0.006	0.018	0.021	0.021	0.025	0.035	0.013	0.023	0.011
Ex5	0.008	0.019	0.019	0.018	0.019	0.063	0.016	0.031	0.016
Ex6	0.006	0.014	0.014	0.014	0.014	0.046	0.018	0.034	0.017
Ex7	0.011	0.016	0.018	0.019	0.020	0.192	0.027	0.049	0.038
Ex8	0.016	0.014	0.020	0.016	0.022	0.072	0.024	0.050	0.023
Ex9	0.008	0.016	0.016	0.017	0.018	0.065	0.027	0.043	0.022
Ex10	0.031	0.076	0.091	0.085	0.095	0.160	0.046	0.077	0.041

Table 4: Results on the UI-PRMD dataset

[3] Liao et al., "A deep learning framework for assessing physical rehabilitation exercises," IEEE TSNRE 2020 [7] Li et. al., Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation," AAAI 2018. [8] Du et al., "Hierarchical recurrent neural network for skeleton based action recognition," CVPR 2015[6] Yanet al., "Spatial temporal graph convolutional networks for skeleton-based action recognition," AAAI2018.

Handcrafted vs Feature Learning

Benchmark on KIMORE

Ex	Matric		Deep Learning approach						Handcrafted features [5]				
LIA	Maure	Ours	Du ct al.[8]	Li et al. [7]	Yan ct al. [4]	Liao et al. [3]	K-NN	RF	SVM	NN			
	MAD	0.79	1.27	1.37	0.88	1.14	1.38	4.77	3.12	3.08			
Ex1	RMS	2.02	2.44	2.34	2.01	2.53	2.33	5.93	4.34	4.35			
	MAPE	1.92	3.22	3.49	2.33	2.58	3.90	21.34	23.82	8.51			
	MAD	0.774	2.19	1.87	2.09	1.52	3.19	4.82	2.83	3.97			
Ex2	RMS	2.12	4.29	2.82	3.26	3.73	4.22	5.71	3.68	5.22			
M	MAPE	1.27	6.00	5.29	6.13	3.97	8.65	21.54	23.53	10.50			
	MAD	0.36	1.12	1.45	0.60	0.84	3.38	5.08	3.94	4.53			
Ex3	RMS	0.55	1.92	2.00	0.79	1.56	5.23	6.42	5.40	6.55			
	MAPE	0.72	3.42	4.18	1.72	2.02	9.67	19.23	20.89	12.26			
	MAD	0.34	0.88	0.67	0.84	0.46	2.41	4.86	3.34	4.76			
Ex4	RMS	0.64	1.67	1.07	1.33	0.79	3.73	5.99	4.52	6.94			
MA	MAPE	0.84	2.58	1.97	2.32	2.33	5.95	19.33	21.36	12.58			
	MAD	0.62	1.86	1.66	1.21	0.84	2.71	4.80	3.04	2.34			
Ex5	RMS	1.18	3.15	2.57	1.95	1.91	4.28	6.07	4.91	3.15			
	MAPE	1.59	5.62	5.75	3.80	2.31	6.84	16.74	18.04	5.41			

Table 5: Results on the KIMORE dataset

[3] Liao et al., "A deep learning framework for assessing physical rehabilitation exercises," IEEE TSNRE 2020 [7] Li et. al., Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation," AAAI 2018. [8] Du et al., "Hierarchical recurrent neural network for skeleton based action recognition," CVPR 2015[6] Yanet al., "Spatial temporal graph convolutional networks for skeleton-based action recognition," AAAI2018.

Assessment with RGB Camera

Assessment on RGB Data

Overall R	esult							
Successfully o	utlook	Unnecessary joint						
unnecessary jo	GCN	deg	rade					
			perf	ormano	ce(BlazePos			
Metric Algorith	0	Liao	Yan	Li	Du			
Metric Algorith	hm Ours	et al. [3]	et al. [6]	et al. [7]	et al. [8]			
BlazePo	ose 0.971	4.043	3.709	4.548	6.309			
MAD VideoPos	e3D 1.855	2.554	3.084	3.546	4.669			
Kinect	v2 0.621	0.847	1.218	1.663	1.864			
BlazePo	ose 1.993	5.991	5.657	7.194	8.681			
RMS VideoPos	e3D 3.822	3.908	4.943	5.202	6.012			
Kinect	v2 1.180	1.914	1.951	2.575	3.158			
BlazePo	ose 3.081	15.618	15.917	20.897	25.816			
MAPE VideoPos	e3D 6.810	8.102	10.790	11.964	14.750			
Kinect	v2 1.591	2.312	3.802	5.752	5.620			

Table 6: Results on KIMORE RGB Exercise 5

[3] Liao et al., "A deep learning framework for assessing physical rehabilitation exercises," IEEE TSNRE 2020 [7] Li et. al., Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation," AAAI 2018. [8] Du et al., "Hierarchical recurrent neural network for skeleton based action recognition." CVPR 2015[6] Yanet al., "Spatial

BlazePose: 33 joints VideoPose3D : 17

Assessment on RGB Data

• Pros

- Cost Efficient
- Easily Available
- No Need Extra Sensors
- Cons
 - Decrease Performance
 - Time Consuming
 - Depth Ambiguity

Trade off between price and performance

Conclusion

- Propose attention guided GCN for assessing physical rehabilitation exercises.
- Leverage attention mechanism (dynamic), flexible to input length and guidance system.
- Future direction
 - Improve the guidance system using supervision of therapist.
 - ➤Take input as cheaply available RGB data.

Publications, Code and Other Resources

- S. Deb, M. F. Islam, S. Rahman and S. Rahman, "Graph Convolutional Networks for Assessment of Physical Rehabilitation Exercises," in *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 30, pp. 410-419, 2022, DOI: <u>10.1109/TNSRE.2022.3150392</u>. (SJR rank: Q1, IF= 4.528)
- S. Rahman, S. Sarker, A. K. M. Nadimul Haque, M. M. Uttsha, M. F. Islam and S. Deb, "AI-driven Stroke Rehabilitation Systems and Assessment: A Systematic Review," in *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 2022, DOI: <u>10.1109/TNSRE.2022.3219085</u>. (SJR rank: Q1, IF= 4.528)

Check code and other resources @

Reference

Cao, Zhe, et al. "OpenPose: realtime multi-person 2D pose estimation using art Affinity Fields.", CVPR 2019.

Liao et. al., "A deep learning framework for assessingphysical rehabilitation ercises," IEEE Trans. Neural Syst. Rehabilitation Eng, 2020

Yan et. al., "Spatial temporal graph convolutional networksfor skeleton-based stion recognition" AAAI 2018

] Song et. al., "Richly activated graph convolutional network for robust skeletonction recognition," IEEE TCSVT, 2021.

] Zhang et. al., "Semantics guided neural networks for efficient skeleton-based ction recognition," CVPR 2020.

JLI et. al., Co-occurrence feature learning from skeleton data for action recognitind detection with hierarchical aggregation," AAAI 2018.

Reference

[8] Du et al., "Hierarchical recurrent neural network for skeleton based action recognition," CVPR 2015

Thank you